Power Electronics \& Control

GENERAL NFS

Descripción

Equipos de potencia para control de cargas trifásicas.
Disponen de:

- IGBTs. de ultima generación
- Protección de la potencia por sobre corriente, por Vce sat, sobre temperatura, sobre tensión y caída tensión de disparos.
- Salidas analógicas protegidas; correspondientes a Temp. Disipador, medida DC.link y corrientes.
- Batería de condensadores en DC-link baja inductancia.
- Alimentación y señales de control a través de cable plano 26 Pines. Compatible otras marcas.

Aplicación

- Control de motores
- Solar
- Almacenamiento energético
- UPS
- Regeneración de corriente trifásica a la red
- Aplicaciones donde se requiera generar o gobernar una carga trifásica

Datos comunes

\checkmark Conector cable plano 26 ${ }_{\text {pIN }}$ (I/O al exterior). Compatible con otras marcas.
\checkmark Tensión potencia DC max. de trabajo 800 Voltios.
\checkmark Tensión de alimentación control 24V DC. (Rango de 20 a 30V).
\checkmark Entradas protegidas a cargas electroestáticas.
\checkmark Entradas disparos CMOS 15 V (max 20V). Impedancia de 3 K 3 ohmios.
\checkmark Incorpora una sonda de corriente por rama.
\checkmark Dos sondas NTC para medición de temperatura del disipador.
\checkmark Tarjeta para medición del DC-link, con salida analógica aislada.
$\checkmark 5$ salidas analógicas protegidas contra cortocircuito:

- 3 de corriente.
- 1 de DC-link
- 1 temperatura (NTC más alta).
$\checkmark 4$ salidas open-collector para indicación de alarmas, protegidas por sobre corriente.
- 1 salida por cada rama.
- 1 sobre-temperatura.

Power Electronics \& Control

Protecciones

\checkmark Lógica de protección ante cualquier anomalía que inhibe los disparos y bloquea el equipo hasta que transcurran al menos 200 ms sin disparos en las entradas. Supone una seguridad adicional ante un eventual bloqueo del control externo.
\checkmark Alarma individual de cada una de las tres ramas.
\checkmark Alarma sobre-corriente en cualquiera de las tres ramas.
\checkmark Alarma sobre-temperatura (ver más adelante en tabla salidas analógicas)
\checkmark Alarma sobre-tensión en bus DC-link (>800V)
\checkmark Alarma caída tensión alimentación externa (<20V)
\checkmark Protección de los IGBTs por Vce sat. y caída de alimentación de disparo.

RANGO DE MEDIDAS

Dentro de cada tamaño hay varios modelos. El objetivo que se persigue con esto es tener un equipo más ajustado a la carga a pilotar; Determinadas cargas requieren que la medida de corriente sea lo más precisa posible, así es el caso de motores controlados en control vectorial.

Datos obtenidos a $560 \mathrm{~V}_{\text {DC }} \mathrm{F} . \mathrm{sw}=4 \mathrm{KHz}$ (excepto NFS-400-25 a 2 Khz) $\mathrm{T}_{\text {AMB }}=40^{\circ} \mathrm{C}$							
CÓDIGO NFS		$\mathrm{I}_{\text {RMS }}(\mathrm{A})$		$\mathrm{IC}_{\text {PICO }}$ (A)		CAPACIDAD TOTAL	
		I.RMS1	I.RMS2	8V	10V	EQUIPO	
		ALARMA			(condensadores electrolíticos)		
TAMAÑO 1							
50	-10		10	13	24	30	$4(1500)=1500 \mathrm{uF}$
	-15	20	26	44	56		
	-20	29	38	69	86		
	-25	39	52	89	111		
TAMAÑO 2							
200	-10	45	60	133	167	$4(3300)=3300 \mu \mathrm{~F}$	
	-15	64	85	149	187		
	-20	83	110	206	258	$6(3300)=4950 \mu \mathrm{~F}$	
	-25	94	125	240	300		
TAMAÑO 3							
400	-10	113	150	267	333	$8(3300)=6600 \mu \mathrm{~F}$	
	-15	124	165	339	424		
	-25	150	200	427	533		
TAMAÑO 4							
425	-25	165	220	427	533	$6(6800)=10200 \mu \mathrm{~F}$	
TAMAÑO 5							
905	-10	263	350	667	833	$12(6800)=20400 \mu \mathrm{~F}$	
	-15	326	435	788	985		
914	-20	413	550	1000	1250	$12(6800)=20400 \mu \mathrm{~F}$	
TAMAÑO 6							
1400	-10	450	600	1067	1333	$18(6800)=30600 \mu \mathrm{~F}$	
	-20	525	700	1255	1569		

Corrientes con bus DC 560V; Tamb. $=40^{\circ} \mathrm{C}$, f.sw $=4 \mathrm{Khz}$ (Excepción NFS-400-25, donde Fsw=2Khz) I.RMS. 1 Intensidad con sobrepar admisible de 50\%.
I.RMS. 2 Intensidad par constante o sobrepar controlado.

CABLE PLANO

El cable plano es de 26 PINES
A través de él se conecta la alimentación y todas las señales de control. Para determinar consumos de alimentación ver pdf de cada modelo.
En equipos tamaño 5 o 6 si la alimentación supera los 2 Amperios es recomendable alimentarlos del conector auxiliar, dejando el cale plano solo para señales.
Las relaciones de corriente son según modelo. Ver tabla anterior.

Pin		signal	remark
1	free		
2	HB 1	BOT IN	positive 15V CMOS logic; 3 k 3 impedance
3		ALARM OUT	Alarma HB 1 LOW = NO ERROR; open colector output
4		TOP IN	positive 15V CMOS logic; 3 k 3 impedance
5	HB 2	BOT IN	positive 15V CMOS logic; 3 k 3 impedance
6		ALARM OUT	Alarma HB 2 LOW = NO ERROR; open colector output
7		TOP IN	positive 15V CMOS logic; 3 k 3 impedance
8	HB 3	BOT IN	positive 15V CMOS logic; 3 k 3 impedance
9		ALARM OUT	Alarma HB 3 LOW = NO ERROR; open colector output
10		TOP IN	positive 15V CMOS logic; 3k3 impedance
11	Overtemperature OUT		LOW = NO ERROR; open colector output
12	free		
13	V DC. LINK		analog OUT; 9V $=800 \mathrm{~V}$
14	+24V IN		24 V DC ($20-30 \mathrm{~V}$)
15	+24 V IN		24 V DC (20-30V)
16	free		
17	free		
18	GND		GND for power supply and digital signals
19	GND		GND for power supply and digital signals
20	Temp. Alnalog OUT		analog OUT; $8 \mathrm{~V}=75^{\circ} \mathrm{C}$
21	GND aux.		reference for analog output signals
22	I analog OUT HB 1		analog OUT; 10V = Max current (100\% Ic) see table
23	GND aux.		reference for analog output signals
24	1 analog OUT HB 2		analog OUT; 10V = Max current (100% Ic) see table
25	GND aux.		reference for analog output signals
26	1 analog OUT HB 3		analog OUT; 10V = Max current (100% Ic) see table

ENTRADAS DIGITALES

Las entradas de disparos HB-1-2-3 TOP y BOT (superior e inferior) son entradas CMOS, con una impedancia de entrada de 3K3 ohmios. Disponen de un pequeño filtro y protecciones contra cargas electroestáticas.
Los niveles típicos alto y bajo son:
Nivel bajo "0" inferior a 7,3 voltios
Nivel alto " 1 " superior a 9,4 voltios

SALIDAS ANALÓGICAS

Las salidas analógicas están protegidas contra sobre-corriente. Superior a 30 mA . El rango de medida según tabla adjunta.

Salidas analógicas	Rango V medida		Protecciones equipo	
	Min.	Max.		
Salidas según tabla corrientes	-10	+10	+/-10V +/-1\%	STOP
Salida temperatura(Tamaño 1)	0	+10	$71^{\circ} \mathrm{C}+/-2{ }^{\circ} \mathrm{C}$	STOP
Salida temperatura modelo INF 450	0	+10	$78{ }^{\circ} \mathrm{C}+/-2{ }^{\circ} \mathrm{C}$	STOP
Salida Bus DC	0	+10	$9 \mathrm{~V}(800 \mathrm{~V})+/-5 \%$	STOP

Gráfico salida información NTC (Tolerancia $+/-3^{\circ} \mathrm{C}$). Temperatura más alta de las dos NTC que incorpora el equipo. Se puede considerar lineal entre ($30^{\circ} \mathrm{C}=2,5 \mathrm{~V}$ y $80^{\circ} \mathrm{C}=8,5 \mathrm{~V}$). NTC situadas en el disipador lo más próximas a los IGBT,s

Gráfico Bus o DC-link (MTC-3028) (Tolerancia +/- 2\%). A través del DC-LINK se mide la tensión total en el bus, siendo una relación lineal. La tensión de bus max para esta serie es de 800 V (Siendo esta la tensión a la cual se cortan los disparos).

Power Electronics \& Control

ALARMAS (hardware)

Las salidas correspondientes a las alarmas, son en colector abierto y se encuentran protegidas contra cortocircuito (max 30 mA .)

Códigos alarmas

CONDITIONS	ALARM TEMP	ALARM1	ALARM2	ALARM3
ALARMA RAMA 1	0	1	0	0
ALARMA RAMA 2	0	0	1	0
ALARMA RAMA 3	0	0	0	1
SOBRETEMPERATURA	1	0	0	0
SOBRECORRIENTE	0	1	1	1
V bus ALTA $^{\text {VALIMENTACIón }}$ BAJA	0	1	1	1
V	0	1	1	1

Obsérvese que las alarmas de sobre corriente, tensión de bus alta y tensión de alimentación baja no se diferencian por hardware.

