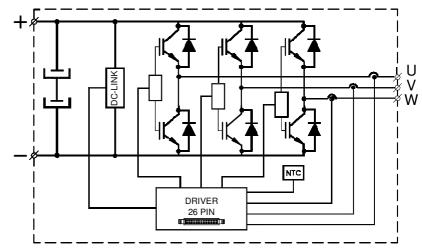


GENERAL INF

Descripción


Equipos de potencia para control de cargas trifásicas.

Disponen de:

- IGBTs. de ultima generación
- Protección de la potencia por sobre corriente, por Vce sat, sobre temperatura, sobre tensión y caída tensión de disparos.
- Salidas analógicas protegidas; correspondientes a Temp. Disipador, medida DC.link y corrientes.
- Batería de condensadores en DC-link baja inductancia.
- Alimentación y señales de control a través de cable plano 26 Pines. Compatible otras marcas.

Aplicación

- Control de motores
- Solar
- Almacenamiento energético
- UPS
- Regeneración de corriente trifásica a la red
- Aplicaciones donde se requiera generar o gobernar una carga trifásica

Datos comunes

- ✓ Conector cable plano 26_{PIN} (I/O al exterior). Compatible con otras marcas.
- ✓ Tensión potencia DC max. de trabajo 800 Voltios.
- ✓ Tensión de alimentación control 24V DC. (Rango de 20 a 30V).
- ✓ Entradas protegidas a cargas electroestáticas.
- ✓ Entradas disparos CMOS 15 V (max 20V). Impedancia de 3K3 ohmios.
- ✓ Incorpora una sonda de corriente por rama.
- ✓ Dos sondas IGBT NTC internas para medición de temperatura del disipador. Excepto modelo INF 450 que son externas.
- ✓ Tarjeta para medición del DC-link, con salida analógica aislada.
- √ 5 salidas analógicas protegidas contra cortocircuito:
 - 3 de corriente.
 - 1 de DC-link
 - 1 temperatura (NTC más alta).
- √ 4 salidas open-collector para indicación de alarmas, protegidas por sobre corriente.
 - 1 salida por cada rama.
 - 1 sobre-temperatura.

SERIE INF v0 castellano

Revision: 26/05/2020 1/5

Protecciones

- ✓ Lógica de protección ante cualquier anomalía que inhibe los disparos y bloquea el equipo hasta que transcurran al menos 200ms sin disparos en las entradas. Supone una seguridad adicional ante un eventual bloqueo del control externo.
- ✓ Alarma individual de cada una de las tres ramas.
- ✓ Alarma sobre-corriente en cualquiera de las tres ramas.
- ✓ Alarma sobre-temperatura (ver más adelante en tabla salidas analógicas)
- ✓ Alarma sobre-tensión en bus DC-link (>800V)
- ✓ Alarma caída tensión alimentación externa (<20V)</p>
- ✓ Protección de los IGBTs por Vce sat. y caída de alimentación de disparo.

RANGO DE MEDIDAS

Dentro de cada tamaño hay varios modelos. El objetivo que se persigue con esto es tener un equipo más ajustado a la carga a pilotar; Determinadas cargas requieren que la medida de corriente sea lo más precisa posible, así es el caso de motores controlados en control vectorial.

Data obtained at 560VDC F. SW = 4KHz TAMB = 40°C							
INF Code		IRMS (A)		IcPICO (A)		TOTAL CAPACITY	
		I.RMS1	I.RMS2	8V	10V	EQUIPMENT	
		I.KIVI31			ALARM	(Electrolytic capacitor)	
SIZE 1							
	-10	10	13	24	30		
50	-15	20	26	44	56	4 (1500) = 1500uF	
] 30	-20	29	38	69	86		
	-25	39	52	89	111		
	SIZE 2						
150	-10	45	60	133	167	8(1500) = 3000μF	
150	-15	64	85	159	198		
SIZE 3							
450	-25	150	200	427	533	8 (3300) = 6600µF	
	SIZE 4						
1400	-15	348	435	788	985	12 (6800) = 20400μF	
1400	-20	445	550	1000	1250		
	SIZE 5						
2801	-10			1376	1720	24(5600) = 33600μF	
	-15			1564	1955		
	-20			1690	2112		

SERIE INF v0 castellano Revision: 26/05/2020

2/5

CABLE PLANO

El cable plano es de 26 PINES

A través de él se conecta la alimentación y todas las señales de control.

Para determinar consumos de alimentación ver pdf de cada modelo.

En equipos tamaño 4 o 5 si la alimentación supera los 2 Amperios es recomendable alimentarlos del conector auxiliar, dejando el cale plano solo para señales.

Las relaciones de corriente son según modelo. Ver tabla anterior.

Pin	signal		remark		
1	free				
2	HB 1	BOT IN	positive 15V CMOS logic; 3k3 impedance		
3		ALARM OUT	Alarma HB 1 LOW = NO ERROR; open colector output		
4		TOP IN	positive 15V CMOS logic; 3k3 impedance		
5	HB 2	BOT IN	positive 15V CMOS logic; 3k3 impedance		
6		ALARM OUT	Alarma HB 2 LOW = NO ERROR; open colector output		
7		TOP IN	positive 15V CMOS logic; 3k3 impedance		
8		BOT IN positive 15V CMOS logic; 3k3 impedance			
9	HB 3	ALARM OUT	Alarma HB 3 LOW = NO ERROR; open colector output		
10		TOP IN	positive 15V CMOS logic; 3k3 impedance		
11	Overtemperature OUT		LOW = NO ERROR; open colector output		
12	2 free				
13	V DC. LINK		analog OUT; 9V = 800V		
14	+24V IN		24V DC (20 - 30V)		
15	5 +24V IN		24V DC (20 - 30V)		
16	free				
17	free				
18	GND		GND for power supply and digital signals		
19	GND		GND for power supply and digital signals		
20	Temp. Alnalog OUT		analog OUT; 8V = 75°C		
21			reference for analog output signals		
22	I analog OUT HB 1		analog OUT; 10V = Max current (100% lc) see table		
23	GND aux.		reference for analog output signals		
24	I analog OUT HB 2		analog OUT; 10V = Max current (100% lc) see table		
25			reference for analog output signals		
26	I analog OUT HB 3		analog OUT; 10V = Max current (100% lc) see table		

ENTRADAS DIGITALES

Las entradas de disparos HB-1-2-3 TOP y BOT (superior e inferior) son entradas CMOS, con una impedancia de entrada de 3K3 ohmios. Disponen de un pequeño filtro y protecciones contra cargas electroestáticas.

Los niveles típicos alto y bajo son:

Nivel bajo "0" inferior a 7,3 voltios

Nivel alto "1" superior a 9,4 voltios

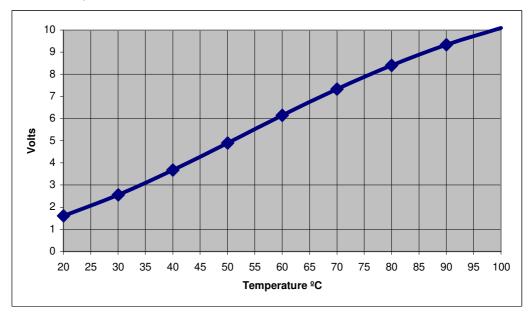
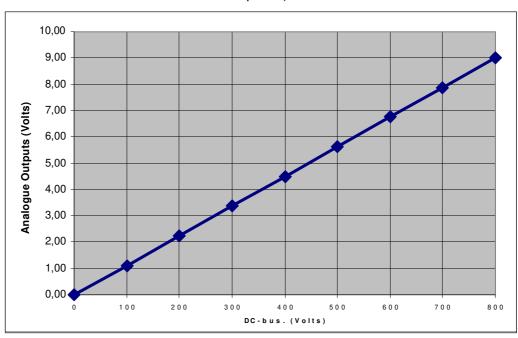
SERIE INF v0 castellano Revision: 26/05/2020

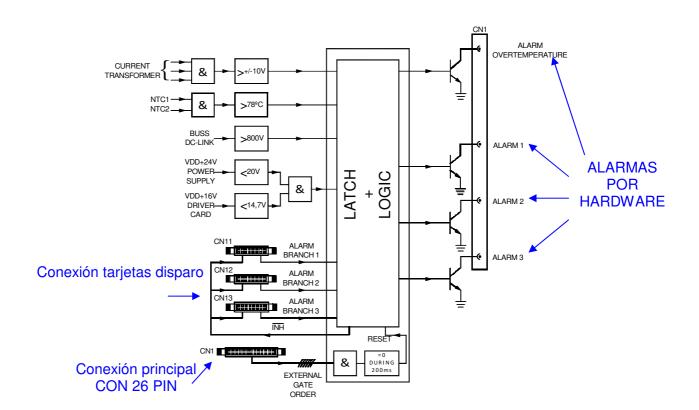
SALIDAS ANALÓGICAS

Las salidas analógicas están protegidas contra sobre-corriente. Superior a 30 mA. El rango de medida según tabla adjunta.

Salidas analógicas	Rango V medida		Protecciones equipo	
Salidas alialogicas	Min.	Max.	Protecciones equipo	
Salidas según tabla corrientes	-10	+10	+/-10V +/-1%	STOP
Salida temperatura	0	+10	84ºC +/- 2 ºC	STOP
Salida temperatura modelo INF 450	0	+10	78ºC +/- 2 ºC	STOP
Salida Bus DC	0	+10	9V(800V) +/-5%	STOP

Gráfico salida información NTC (Tolerancia +/- 3° C). Temperatura más alta de las dos NTC que incorpora el equipo. Se puede considerar lineal entre (30° C = 2,5V y 80° C = 8,5V). NTC situadas en el disipador lo más próximas a los IGBT,s


Gráfico Bus o DC-link (MTC-3028) (Tolerancia +/- 2%). A través del DC-LINK se mide la tensión total en el bus, siendo una relación lineal. La tensión de bus max para esta serie es de 800V (Siendo esta la tensión a la cual se cortan los disparos).

SERIE INF v0 castellano

ALARMAS (hardware)

Las salidas correspondientes a las alarmas, son en colector abierto y se encuentran protegidas contra cortocircuito (max 30 mA.)

Códigos alarmas

CONDITIONS	ALARM TEMP	ALARM1	ALARM2	ALARM3
ALARMA RAMA 1	0	1	0	0
ALARMA RAMA 2	0	0	1	0
ALARMA RAMA 3	0	0	0	1
SOBRETEMPERATURA	1	0	0	0
SOBRECORRIENTE	0	1	1	1
V _{BUS} ALTA	0	1	1	1
V _{ALIMENTACIÓN} BAJA	0	1	1	1

Obsérvese que las alarmas de sobre corriente, tensión de bus alta y tensión de alimentación baja no se diferencian por hardware.